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Introduction
Data presented in this report pertain to the igneous 

intrusions of north-central and northeast Nevada and were 
compiled as part of the Metallogeny of the Great Basin project 
conducted by the U.S. Geological Survey between 2001 and 
2007.  The geographic area addressed in this compilation is 
approximately bounded by lats 38.5° and 42°N., long 118.5° 
W., and the Nevada-Utah border (fig. 1).  The area contains 
numerous large plutons and smaller stocks but also contains 
many small, shallowly emplaced intrusive bodies, including 
dikes, sills, and intrusive lava dome complexes.  The age, 
composition, and geographic distribution of intrusions in 
north-central and northeast Nevada (hereafter, the study area) 
are summarized by du Bray and Crafford (2007).  Intrusive 
igneous rocks, of multiple ages, are known to be major con-
stituents of the geologic framework in the study area (Stewart 
and Carlson, 1978).  Abundant middle to late Mesozoic and 
early to middle Cenozoic intrusions in the study area are prob-
ably byproducts of subduction-related processes, including 
back-arc magmatism, that prevailed along the west edge of the 
North American plate during this interval.

Ressel and others (2000) and Ressel and Henry (2006), 
for example, have highlighted the association between magma-
tism and ore deposits along the Carlin trend.  Similarly, Theo-
dore (2000) has demonstrated the association between igneous 
intrusions and ore deposits in the Battle Mountain area.  
Decades of geologic investigations in the study area demon-
strate that many ore deposits, representing diverse ore deposit 
types, are spatially, and probably temporally and genetically, 
associated with igneous intrusions.  Because of these associa-
tions, studies of many individual igneous intrusions have been 
completed, including those by a large number of Master’s and 
Doctoral thesis students (particularly University of Nevada at 
Reno students and associated faculty), economic geologists 
working on behalf of exploration and mining companies, and 
U.S. Geological Survey earth scientists.  However, despite the 

number and importance of igneous intrusions in the study area, 
no synthesis of geochemical data available for these rocks has 
been completed.

Data compilations that are available for igneous intru-
sions in Nevada pertain to relatively restricted geographic 
areas and (or), in most cases, do not include the broad array of 
data that would aid interpretation of these rocks.  Smith and 
others (1971) presented potassium-argon geochronologic and 
basic petrographic data for a few intrusions in north-central 
Nevada.  Similarly, Silberman and McKee (1971) presented 
potassium-argon geochronologic data for a significant number 
of central Nevada intrusions.  More recently, Mortenson and 
others (2000) presented uranium-lead geochronology for a 
small number of intrusions in the study area.  Sloan and oth-
ers (2003) released a national geochronologic database that 
contains age determinations made prior to 1991 for rocks of 
Nevada.  Finally, Henry and Sloan (2003) compiled geochro-
nologic data for igneous rocks of Nevada produced subsequent 
to completion of the Sloan and others (2003) compilation.  
Consequently, although age data for igneous rocks of Nevada 
have been compiled, data pertaining to compositional features 
of these rocks have not been systematically synthesized.  Mal-
donado and others (1988) compiled the distribution and some 
basic characteristics of intrusive rocks throughout Nevada.  
Lee (1984), John (1983, 1987, and 1992), John and others 
(1994), and Ressel (2005) have compiled data that partially 
characterize igneous intrusions in various parts of Nevada.  
Contained in the text and data that follow is a more complete 
synthesis of composition and age data for igneous intrusions 
of the study area.  The ultimate goal of this effort is an evalu-
ation of the time-space-compositional evolution of Mesozoic 
and Cenozoic magmatism in the study area and identification 
of genetic associations between magmatism and mineralizing 
processes in this region.
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Figure 1 (above and following page).  Index map (compiled from Crafford, in press) showing approximate distributions of intrusive rocks 
and analyzed samples, north-central and northeast Nevada.  Thin purple line outlines the Metallogeny of the Great Basin project area 
(the geographic area within which analyses were compiled).  A, Locations of intrusions, in red.  B, Collection sites for samples included 
in database, indicated by blue plus symbols.
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Figure 1.  Index map showing approximate distributions of intrusive rocks and analyzed samples, north-central and northeast Nevada—
Continued.
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were available only in analog form and had to be painstak-
ingly typed.  Many geologic researchers gave tirelessly of their 
time to track down missing bits of information that allow this 
database to be as complete as it is.  These individuals include 
M. Granitto, M.D. Barton, E. Seedorff, J. Nicholes, A.J. 
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A.R. Wallace, J.L. Doebrich, D.R. Shawe, R.W. Kistler, E.H. 
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Henry that helped improve this report.

Intrusions of North-Central and Northeast 
Nevada—Constituents of the Database

The study area contains numerous large plutons and 
smaller stocks but also contains many smaller, shallowly 
emplaced intrusive bodies, including dikes, sills, and intrusive 
lava dome complexes.  Many geologic investigations have 
demonstrated that intrusions in the study area are principally 
of three ages, Jurassic, Cretaceous, and Eocene.  However, in 
the western part of the study area, a number of intrusions are 
thought to be of Triassic age (Johnson, 1977).  Several small, 
shallowly emplaced Miocene-age intrusions have been delin-
eated in various parts of the study area.  This report pertains to 
intrusions of these ages but does not contain data for Paleo-
zoic intrusions, principally very mafic, that are likely parts of 
detached, allocthonous thrust sheets.

Crafford (in press) recently completed compilation of a 
digital geologic map of Nevada using the Nevada Bureau of 
Mines and Geology county reports and accompanying geo-
logic maps as primary sources.  The new compilation is based 
mostly on the existing county maps and generally depicts 
geologic relations shown on those maps.  As part of the digital 
recompilation, discontinuities across county boundaries were 
reconciled.  The resulting compilation identifies many of 
the intrusions for which geochemical data were compiled.  
However, the database also includes data for intrusions, in 
many cases small intrusions, that were not identified on the 
county geologic maps.  Background documentation for some 
analytical data presented in this report is incomplete and (or) 
may be misleading or incorrect, any of which could cause 
inclusion of inappropriate information in the database.  Every 
effort has been made to preclude inclusion of misleading data; 
the amount of this type of data inadvertently included in the 

database is probably small and should not significantly affect 
data interpretation.

Data Compilation Methods
Several significant efforts to obtain new compositional 

data for intrusions in the study area preceded and served as 
a starting point for the effort documented here.  S.B. Keith 
(MagmaChem Exploration, Inc.) obtained data for samples 
from several hundred intrusions in the Great Basin.  Geologists 
employed by AngloGold Ashanti collected and analyzed an 
additional several hundred samples of intrusions in the study 
area as part of an exploration program.  Most recently, as part 
of Ph.D. thesis research and subsequent investigations, M.W. 
Ressel collected and analyzed several hundred more samples 
of intrusions in the study area in an attempt to establish links 
between various intrusions and Carlin gold deposits.

Copies of original data source materials (subsequently 
referred to as sources), including published reports and Mas-
ter’s and Doctoral theses, were used to add data to the data-
base.  Reference lists contained in sources of data were exam-
ined and used to identify additional data sources.  In this way, 
data for about 2,800 samples from 93 sources were identified 
and incorporated in the database.  We believe that this process 
has probably resulted in identification and incorporation of 
most of the compositional data that have been produced for 
samples of intrusions in the study area.  In order for a sample 
to be included in the database, at least a sample number and 
major oxide analysis were required.  Samples for which only 
trace element data were available were not included in the 
database.  Additional trace element (for instance, the rare 
earths) and (or) isotopic data are available for some samples, 
but because the number of these samples is very small, these 
data were not included in the database.  Small amounts of 
additional data can be gleaned by consulting the appropriate 
data sources.  No effort was made to exclude hydrothermally 
altered samples from the compilation.  Rather, all intrusive 
rock compositional data were compiled and samples known to 
be altered were coded accordingly.  In a subsequent interpre-
tive phase of this work, additional altered samples will be 
identified using standard geochemical criteria.  The win-
nowing process will result in two derivative databases.  The 
derivative database for essentially unaltered intrusive rocks 
will allow evaluation of time-space-composition relations 
between magmatism and ore genesis.  The derivative data-
base containing data for altered rocks will allow evaluation 
of hydrothermal alteration effects on primary rock composi-
tions.  Database users should be wary of samples with SiO

2
 

abundances greater than 77 percent, initial analytic totals less 
than 95 percent or greater than 103 percent, Al

2
O

3
 abundances 

less than 10 percent or greater than 20 percent, total volatile 
contents greater than 5 percent, or Na

2
O/K

2
O ratios less than 1 

or greater than about 12; samples with any of these character-
istics are likely altered and probably do not preserve primary 

�  Geochemical Database for Intrusive Rocks of North-Central and Northeast Nevada



igneous rock compositions.  Data presented in source materi-
als were included in the database, without modification (with 
the exception of normalization of major oxide, as described 
below), and all input subsequently verified.

Data were compiled using Microsoft Excel and can 
be accessed using software compatible with .xls files.  The 
database release (file, NoNVintrusionGX.xls) includes several 
worksheets that are accessed using tabs arrayed along the base 
of the spreadsheet screen display.  The tab labeled “Main NV 
db” accesses the primary data compilation.  The tab labeled 
“db w censored data deleted” accesses a copy of the primary 
data compilation in which censored data (data coded as less 
than some specified value) were deleted prior to calculation of 
summary statistics and creation of histograms.  The tab labeled 
“no loc” accesses data for samples contained in the U.S. 
Geological Survey National Geochemical Database for which 
accurate location data are unavailable.  The database release 
also includes a tab-delimited, text file version of the database 
(file, NoNVintrusionGX.txt).

Data Fields
Data fields presented and described below represent 

those considered most critical to addressing questions con-
cerning the tectonic, petrologic, and metallogenic evolution 
of magmatism in the study area.  Data for each of these fields 
constitute a column, or set of related columns, in the database.  
Data in these columns can be sorted, queried, and interpreted 
to address questions concerning the history, development, and 
implications of magmatic activity in the study area.  Sample 
number records are aggregated in blocks of data that share a 
primary geochemical data source.

Blank cells in the database indicate that no data are 
available for the corresponding column.  Some sources report 
values of zero for some database fields.  These values indicate 
that an abundance determination was attempted but that the 
constituent was not detected in the sample.  Similarly, some 
sources present qualified data.  In particular, records for some 
samples include less than (<) symbols.  These data indicate 
that the constituent was detected but that its concentration was 
unquantifiable beyond the fact that its concentration is less 
than the indicated value.  Actual analytical precision (number 
of significant figures) associated with each database entry is 
portrayed by each displayed onscreen value.  Data in some 
cells appear to be more precise than displayed values, but 
this is a misleading artifact of computational processes (for 
instance, normalization to 100 percent volatile free), which 
may have been used to create data cell contents.  Precision 
varies within individual columns in accordance with specific 
analytical protocols and the way data are reported in individual 
sources.  In most cases, the number of significant figures 
defined in data sources was retained.  However, in some cases, 
the level of precision implied is implausible given either the 
analytical protocol or the corresponding analytical state of the 

art; accordingly, some numeric data contained in the database 
have been rounded to indicate a plausible level of analytical 
precision.

field_no.

Identifiers for analyzed samples materials were compiled 
from sources and presented, without modification.

lithology

In most cases, a lithologic description of analyzed sam-
ples was compiled from information contained in sources.  In 
accordance with procedures defined by the International Union 
of Geological Sciences, composition names for intrusive rocks 
are best defined using the relative modal proportions of quartz, 
alkali feldspar, and plagioclase relative to the classification 
scheme of Streckeisen (1973).  The most informative sources 
present relative proportions of the feldspars and quartz in text 
accompanying geologic reports; this information was used 
to establish composition (or composition range) names for 
intrusions in the study area.  Many publications that serve as 
sources for our compilation predate the classification recom-
mendations of Streckeisen (1973); most of these used the 
classification of Johannsen (1931) to define compositions of 
intrusions in the study area.  To the extent possible, and using 
whatever ancillary data were available, intrusion compositions 
were converted from the nomenclature of Johannsen (1931) 
to that of Streckeisen (1973).  Most of these transformations 
were simple and obvious.  However, the two nomenclature 
systems use the term quartz monzonite to define significantly 
different rocks.  Most of the composition field called quartz 
monzonite by Johannsen (1931) is now referred to as mon-
zogranite in the Streckeisen (1973) system.  Not all source 
authors define which of the two classification schemes was 
used to categorize intrusion compositions, so some ambigu-
ity persists.  An effort was made to recast compositions to the 
Streckeisen (1973) system in cases for which sufficient data 
were available to achieve this with confidence that the integ-
rity of primary source data was not compromised.

Many intrusions of the study area are shallowly emplaced 
and (or) subvolcanic bodies.  As such, their grain size pre-
cludes petrographic modal analysis and classification using the 
Streckeisen (1973) system.  These rocks are instead treated as 
volcanic rocks and their composition names were established 
based on their chemistry and the nomenclature grid described 
by Le Bas and others (1986).

ign_form

The form of the igneous intrusion represented by each 
sample is given where known.  Samples coded as representing 
dikes or sills represent thin tabular bodies that are discordant 
and concordant with enclosing rocks, respectively.  Larger 
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intrusive bodies, generally discordant to enclosing rocks, are 
coded as plutons, stocks, and plugs depending on their size; 
plutons are the largest of these bodies, whereas plugs are the 
smallest.  In most cases, samples from intrusions coded as 
plutons represent bodies that cooled slowly, at the greatest 
depths, and are phaneritic, whereas samples from intrusions 
coded as plugs represent the subvolcanic environment, many 
have a quenched groundmass, and some may represent parts of 
endogenous to exogenous volcanic flow domes.

alteration

Many sources explicitly indicate that some analyzed 
samples are altered.  Other sources provide sufficient descrip-
tive information about samples that alteration can be inferred.  
Some sources simply indicate that samples are altered; these 
samples are simply coded as “Yes” in the “alteration” column.  
Other alteration terms used to code altered samples include 
advanced argillic (abbreviated “adv argillic”), phyllic, argillic, 
propylitic, potassic, skarn, greisen, silicification, oxidation, 
tourmaline, metamorphic, and deuteric.  Each of these terms 
is applied in accordance with their standard usage, defined 
for instance by Guilbert and Park (1986).  These terms are 
appended with a “?” when the proper alteration nomenclature 
is ambiguous due to the nature of available descriptive infor-
mation.

long and lat

An effort was made to obtain location data for all samples 
with composition data.  Most sources contain some form of 
location information.  Missing sample location data were 
requested from authors, most of whom were able to provide 
missing information.  Accordingly, location data are avail-
able for all but two samples.  Latitude and longitude data 
are reported as decimal degrees (relative to the 1927 North 
American Datum).  In the study area, longitude is reported as a 
negative value (western hemisphere) and latitude as a positive 
value (northern hemisphere).

Location data are of variable quality as a consequence of 
the manner in which they were initially acquired and subse-
quently reported.  The number of significant figures presented 
as part of location data in the “long” and “lat” columns defines 
relative levels of sample location precision, as follows:

•  four significant figures indicates that the given location 
is accurate within 10’s of meters,

•  three significant figures indicates that the given loca-
tion is accurate within 100’s of meters, and

•  two significant figures indicates that the given location 
is accurate within 1,000’s of meters.

Some sources report sample location in terms of Town-
ship, Range, and section values, usually to the closest 1/4 of 
a section.  Township-Range-section data were digitized to 

obtain decimal degree location; within the appropriate 1/4 
section quadrilaterals, digitized points were usually selected 
to coincide with a road, trail, stream bottom, quarry, or natural 
cliff, any of which might represent a likely sampling location.  
Some sources do not include numerical sample location data 
but do contain sample maps.  Location data for these samples 
were obtained by digitizing sample sites.  A very few sources 
merely describe sample locations; these were used to estimate 
a sample location, which was then digitized.

Some early records contained in the U.S. Geological 
Survey National Geochemical Database contain location data 
keyed to quadrangle corners.  These location data, and there-
fore the associated composition data, are of uncertain utility.  
For the sake of completeness, and in the hope that location 
data can ultimately be recovered for these samples, composi-
tion data for these samples are compiled in a separate work-
sheet (tab = no loc) in the database.  Data for these samples 
are not included in the histograms or the statistical measures.

SiO�, TiO�, Al�O�, FeO*, MnO, MgO, CaO, Na�O, 
K�O, and P�O�

Sources report whole rock, major oxide data in a variety 
of formats.  In addition, these data were produced by a wide 
array of analytical procedures, each with its own associated 
analytical precision and accuracy.  Compositions for many 
of the samples included in the database are presented in 
their sources already normalized to 100 percent volatile free.  
Some information loss occurs when data are reported solely 
in this fashion.  Compiling analytical methods and associ-
ated estimates of precision and accuracy associated with the 
reported data was beyond the scope of this effort.  Analytical 
protocols, precision, and accuracy were highly variable among 
sources.  Fortunately, most sources document these parameters 
so that associated questions can be resolved by referring to the 
appropriate data source.  The database includes columns for 
the abundances of SiO

2
, TiO

2
, Al

2
O

3
, FeO, MnO, MgO, CaO, 

Na
2
O, K

2
O, and P

2
O

5
.  However, because diverse analytical 

protocols were used to analyze samples, not all sources con-
tain data for each of these constituents.

Several different schemes are possible for reporting iron 
contents.  In addition, reported abundances of ferrous versus 
ferric iron in many of these rocks are unlikely to represent 
magmatic values, because of oxidation during late- to post-
magmatic hydrothermal alteration.  Consequently, total iron 
abundances were recalculated as ferrous iron oxide and 
denoted as FeO*.  Interaction with postmagmatic fluids caused 
compositions of many intrusive rocks of the study area to 
change in other ways as well.  In particular, many of these 
rocks were hydrothermally altered (as indicated by second-
ary clay minerals, sericite, and (or) chlorite).  Both processes 
caused volatile contents of the affected samples to increase, 
and correspondingly caused relative abundances of all other 
constituents to decrease.  Therefore, to facilitate meaningful 
oxide abundance comparisons among samples, all analyses 
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were normalized to 100 percent on a volatile-free basis.  The 
resulting data are reported in columns identified by SiO

2
, TiO

2
, 

Al
2
O

3
, FeO*, MnO, MgO, CaO, Na

2
O, K

2
O, and P

2
O

5
.  All 

data are reported as weight percent.

LOI, H�O+, H�O-, CO�, Cl, F, and S

Data sources report volatile constituent contents of 
samples from intrusions in the study area in widely disparate 
ways.  In order to capture important information concerning 
the volatile contents of these rocks, an array of data columns 
was designated to account for various analytical protocols 
and data reporting formats.  Volatile constituents whose 
abundances are commonly determined include LOI (loss on 
ignition), H

2
O+ (bound), H

2
O- (nonessential, moisture), CO

2
, 

Cl, F, and S.  Of these, few sources contain halogen and S 
abundance data.  Similarly, data for H

2
O+, H

2
O-, and CO

2
 are 

rarely and nonsystematically reported.  However, given the 
potential importance of these constituents in hydrothermal 
processes, compiling all available data for these components 
seems warranted.  Several sources present data for H

2
O and do 

not specify whether this species is bound water (+) or nones-
sential moisture (-).  These data have been included in the 
H

2
O+ column of the database.

total_I

One measure of major oxide analytical accuracy is how 
nearly the sum of the determined constituents approaches 
100 percent.  Consequently, the database includes a column 
that reports initial analytical totals as reported by the source.  
Some sources do not include totals; totals for these samples 
were computed and added to the database.  Initial analytical 
totals reported in the sources were spot checked for accuracy; 
discrepancies were noted and corrected in a number of cases.  
Many sources present abundances for the oxides listed above 
but include no abundance data for volatile constituents.  Initial 
analytical totals for these samples tend to be several to 5 or 
6 percent less than 100 percent.  Unfortunately, it is impos-
sible to determine whether these low initial totals result from 
inaccurate analyses and (or) unreported volatile constituent 
abundances.

vol_sum

The total volatile content of intrusions in the study area 
can provide some insight concerning whether abundances 
of other constituents accurately represent primary magmatic 
values.  Samples with elevated volatile contents, for example 
greater than 3 weight percent, are likely to have experienced 
some fluid-mediated, postmagmatic chemical modification.  
Given the wide range of analytical protocols used in analysis 
of these samples, the best possible measure of sample vola-
tile content is total volatile content.  For the purposes of the 

compilation, if LOI data are the only information contained 
in source data compilations concerning volatile content, LOI 
values were designated as total volatile content.  Alternatively, 
if the source includes data for H

2
O+, H

2
O-, CO

2
, Cl, F, or S, 

these data were summed to yield total volatile content.  All 
data are presented as weight percent.

Ba, La, Ce, Rb, Sr, Y, Zr, Nb, Th, Ga, Co, Cr, Ni, Sc, 
V, Ag, Cu, Mo, Pb, Zn, and Au

The sources present data for inconsistent sets of trace 
elements.  Of these, data for Ba, La, Ce, Rb, Sr, Y, Zr, Nb, 
Th, Ga, Co, Cr, Ni, Sc, V, Ag, Cu, Mo, Pb, Zn, and Au were 
compiled; all data are in parts per million.  These constituents 
are among those for which sources most often contain data 
and also are considered sufficient to address many petrologic, 
tectonic, and metallogenic questions.

chem_src

Chemical, petrographic, and location data for each 
sample included in the database were compiled from pri-
mary data sources, in most cases a single source.  For a few 
samples, data were culled from two or more sources; for 
example, major oxide data may have been compiled from one 
source and trace element data from another.  Most entries in 
the “chem_src” column of the database are keyed numerically 
to sources identified in the following list.  However, some of 
these data were compiled from sources principally dedicated 
to presenting geochronologic data.  Alpha-coded entries in 
the “chem_src” column correspond to sources identified in 
the “age_src” section of this report.  Sources of geochemical 
information include publications of the U.S. Geological Sur-
vey, unpublished data contained in the U.S. Geological Survey 
National Geochemical Database, Master’s theses, Doctoral 
dissertations, articles published in journals, and publications of 
the Nevada Bureau of Mines and Geology.
1. Henry and Faulds (1999)
2. Gilluly and Masursky (1965)
3. Erickson and others (1978)
4. Henry and Boden (1998)
5. Henry, C.D., Nevada Bureau of Mines and Geology, 

unpublished data, 2006
6. Henry and others (1999)
7. Willden (1964)
8. Shaver and Jeanne (1996)
9. Muffler (1964)
10. Gilluly and Gates (1965)
11. Shawe and others (1962)
12. Hotz and Willden (1964)
13. Johnson (1977)
14. Theodore (2000)
15. du Bray, E.A., U.S. Geological Survey, unpublished data, 

2006
16. Roberts (1964)
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17. Theodore and others (1973)
18. Theodore and others (1992)
19. Doebrich (1995)
20. Smith and others (1971)
21. Lee and others (1981)
22. Lee and Van Loenen (1971)
23. Barnes and others (2001)
24. Lee and others (2003)
25. Emsbo and others (2003)
26. Lee (1984)
27. Ressel, M.W., Newmont Mining Corporation, unpub-

lished data, 2006
28. Ressel (2005)
29. Seymour (1980)
30. Emmons and Eng (1995)
31. Thole and Prihar (1998)
32. James (1976)
33. Lawson (1906)
34. Bauer and others (1966)
35. Drewes (1967)
36. Spencer (1917)
37. Shawe (1961)
38. Fournier (1967)
39. Phinisey (1995)
40. Evans (1974)
41. Radtke (1985)
42. Nosker (1981)
43. John (1997)
44. Hargrove (1982)
45. Taylor (1982)
46. Pullman (1983)
47. Smith (1981)
48. Henry (1996)
49. McKee (1976a)
50. Ferguson (1924)
51. Knopf (1924)
52. Hague (1892)
53. Clark (1922)
54. Vikre (1985)
55. McGrew, A.J., University of Dayton, unpublished data, 

2006
56. Hofstra (1994)
57. Barnes, C.G., Texas Tech University, unpublished data, 

2006
58. Boden (1987)
59. John (1992)
60. U.S. Geological Survey, National Geochemical Database, 

2006
61. Shawe and Lepry (1985)
62. Starkey (1987)
63. Myers (1994)
64. Merriam and Anderson (1942)
65. Smith and Ketner (1976)
66. Silberman and others (1974)
67. Thurber (1982)
68. Gibbons (1973)

69. Nelson (1975)
70. Kistler and others (1981)
71. Sayeed (1973)
72. Bonham and others (1991)
73. Brooks (1994)
74. Brooks and others (1991)
75. Keith, S.B., MagmaChem Exploration, Inc., unpublished 

data, 2006
76. Anglo Gold Ashanti, unpublished data, 2006
77. Putney (1985)
78. Clarke (1915)
79. Johnson and Keith (1991)
80. John and others (2000)
81. Ressel and others (2000)
82. Missallati (1973)
83. John, D.A., U.S. Geological Survey, and Henry, C.D., 

Nevada Bureau of Mines and Geology, unpublished data, 
2006

84. John, D.A., U.S. Geological Survey, unpublished data, 
2006

85. Wrucke and Silberman (1975)
86. Shawe (2003)
87. Wrucke and Armbrustmacher (1973)
88. Strike (2000)
89. Burton (1997)
90. Lee (1999)
91. Batum (1999)
92. Burling (1996)
93. Jeon (1999)

rad_age

The ages of the intrusions in the study area have been of 
keen interest and a large number of age determinations have 
been made.  The database column titled “rad_age” contains 
geochronologically determined ages, in millions of years, for 
samples of intrusions in the study area.  Multiple geochro-
nologic age determinations (including U-Pb zircon, Ar-Ar, 
Rb-Sr, and K-Ar ages) have been obtained for some intrusions.  
A listing of the various geochronologic techniques, arranged 
in order of decreasing accuracy, is as follows:  U-Pb zircon, 
Ar-Ar, Rb-Sr, and K-Ar.  Preferred age estimates recorded in 
the “rad_age” column reflect this reliability ranking.  K-Ar 
age determinations have been made for both biotite and horn-
blende mineral separates of some samples.  In these cases, age 
determinations derived from hornblende are included in the 
database in preference to those for biotite.  Fission-track age 
determinations were not included in the compilation.

uncert

The database column titled “uncert” contains data, in 
millions of years, for the analytical uncertainties (as presented 
in the source) associated with each of the age determinations 
reported in the “rad_age” column.
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age_src

Sloan and others (2003) and C.D. Henry (Nevada Bureau 
of Mines and Geology, unpublished data, 2006) have compiled 
(and recalculated ages using currently accepted decay con-
stants, as appropriate) most of the isotopic age data available 
for intrusions in the study area.  Their compilations were used 
to identify the primary data sources (identified in the database 
column titled “age_src”) from which moderately abundant 
geochronologic data for the intrusions in the study area were 
extracted to compile ages of samples included in the data-
base.  In most cases, geochemical and geochronologic data are 
contained in the same source; the age source for each of these 
samples is numerically keyed to a previously identified source 
of geochemical data (database column “chem_src”).  For the 
relatively small number of samples for which geochemical and 
geochronologic data have different sources, age source(s) data 
are keyed to alpha-coded citations listed below:
A. Silberman and McKee (1971)
B. Lee and others (1980)
C. Lee and others (1970)
D. Lee and others (1986)
E. Mortensen and others (2000)
F. Kistler and Lee (1989)
G. Coats and others (1965)
H. McDowell and Kulp (1967)
I. Miller and others (1988)
J. Kelson and others (2000)
K. Farmer (1996)
L. Armstrong (1970a)
M. Ketner (1998)
N. Evans and Ketner (1971)
O. McKee (1992)
P. Doebrich (1994)
Q. Wells and others (1971)
R. Shawe (1999)
S. Mueller (1992)
T. James (1972)
U. Gans and others (1989)
V. Hofstra and others (1999)
W. Ketner (1990)
X. McKee and others (1971)
Y. McKee and Silberman (1970)
Z. Marvin and Cole (1978)
AA. Shawe (1995)
AB. Maher and others (1990)
AC. Tingley (1975)
AD. Carlson and others (1975)
AE. Morabbi (1980)
AF. Armstrong (1966)
AG. Rahl and others (2002)
AH. Morton and others (1977)
AI. Armstrong (1970b)
AJ. Marvin and Dobson (1979)
AK. Maher (1989)
AL. Hudson and others (2000)

AM. Elison and others (1990)
AN. John and Robinson (1989)
AO. Stablein (1969)
AP. Krueger and Schilling (1971)
AQ. Miller and others (1990)
AR. Marvin and others (1989)
AS. Schilling (1965)
AT. Pullman (1984)
AU. John (1983)
AV. McGrew and others (2000)
AW. Ross (1961)
AX. Garside and others (1981)
AY. Bryan (1972)
AZ. Shawe and others (1986)
BA. John (1993)
BB. Coats (1987)
BC. Whitebread (1994)
BD. Gilluly (1967)
BE. Decker (1962)
BF. Coats (1971)
BG. Willden and Speed (1974)
BH. Armstrong and Suppe (1973)
BI. Hose and others (1976)
BJ. Lee and others (1999)
BK. McKee and others (1976)
BL. Nolan and others (1974)
BM. Kleinhampl and Ziony (1984)
BN. Speed and McKee (1976)
BO. Slack (1974)
BP. Coats and McKee (1972)
BQ. Coats and Greene (1984)
BR. Coash (1967)
BS. McKee (1976b)
BT. Ekren and Byers (1985)
BU. Evernden and Kistler (1970)
BV. Miller and others (1987)
BW. Edwards and McLaughlin (1972)
BX. Westra and Riedell (1996)
BY. Moores and others (1968)
BZ. Hart and Carlson (1985)
CA. Speed and Armstrong (1971)
CB. Hardyman and others (1988)
CC. McKee (1968)
CD. Stewart and McKee (1977)
CE. Ressel, M.W., Newmont Mining Corporation, and 

Henry, C.D., Nevada Bureau of Mines and Geology, 
unpublished data, 2006

CF. Silberling and John (1989)
CG. Ekren and Byers (1986)
CH. Hope (1972)
CI. O’Neill (1968)
CJ. Wooden and others (1999)
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geol_age

Radiometric ages have not been determined for most 
samples included in the database.  However, all identified age 
determinations and geologic and geochronologic reasoning 
have been used to develop preferred geologic age estimates for 
most volumetrically significant intrusions in the study area.  
Geologic ages where given in years are rounded to the nearest 
million, which seems appropriate given the nature of this com-
pilation.  No effort was made to establish geologic ages for 
samples of dikes, sills, and other volumetrically insignificant 
intrusions.  No entry is recorded in the “geol_age” column 
when the associated sample has been radiometrically dated.

geol_age_src

Estimates of geologic age for many of the intrusions in 
the study area rely upon geologic inference, correlations, and 
other diverse data sources; these sources are identified in the 
“geol_age_src” column of the database.  Digits left of the “\” 
symbol identify the principal source used to establish geologic 
age.  These digits are keyed to entries previously identified in 
either the “chem_src” or “age_src” discussions above.  Digits 
to the right of the “\” symbol identify the rationale used to 
establish geologic age.  Entries coded as “\1” indicate that a 
correlation of map units figure or some discussion of intru-
sion age in the source provides the basis for the geologic age 
assignment.  In contrast, entries coded as “\2” indicate that the 
radiometric age of sample(s) that are not part of the database, 
but representative of the same intrusion as sample(s) that are 
included in the database, was used to establish geologic age.

intrusion_name

We established a unique geographic name for each 
phaneritic intrusion delineated on the digital geologic map of 
Nevada (Crafford, in press); these designations are compiled 
in the “intrusion_name” column of the database.  The sources 
used to establish intrusion ages and compositions were also 
consulted for geographic name designation.  Intrusion names 
identified in the sources were adopted in our compilation.  The 
sources did not identify geographic names for all intrusions 
in the study area.  In these cases, a nearby named geographic 
feature was adopted and assigned as the intrusion name.  
Assigned geographic intrusion names are not designations 
in the sense of stratigraphic nomenclature.  However, geo-
graphic names presented in this compilation are in accord with 
established stratigraphic nomenclature for intrusions for which 
either formal or informal stratigraphic nomenclature exists, 
and to the extent that the sources identified these names.

Qtz, Kfs, Pl, Maf, Opq, Ol, Pyx, Hbl, Bt, Ms, Acc, 
Gnm, and Alt

In addition to their geochemical characteristics, the com-
position of intrusive rocks can be quantified in terms of the 
relative abundances of the minerals they contain.  This type 
of characterization, modal analysis, is accomplished by point 
counting either thin sections using a petrographic microscope 
or stained slabs using a low magnification binocular micro-
scope.  The effort involved in conducting these types of modal 
analyses is time consuming and difficult, with the consequence 
that this type of data is rarely collected.  However, since modal 
data are precisely the type of information required to classify 
the composition of phaneritic intrusive rocks (Streckeisen, 
1973), compilation of this type of data, as it was encoun-
tered in the literature, seemed warranted.  This section of the 
database contains columns for the relative abundances (sum-
ming to about 100 percent) in volume percent of quartz (Qtz), 
alkali-feldspar (Kfs), plagioclase (Pl), the sum of all mafic 
minerals, including micas, hornblende, and iron-titanium 
oxides (Maf), opaque iron-titanium oxide minerals (Opq), 
olivine (Ol), pyroxene (Pyx), hornblende (Hbl), biotite (Bt), 
muscovite (Ms), accessory minerals (Acc), groundmass miner-
als (Gnm), and alteration minerals (Alt).  Most of these spe-
cies are self evident.  The common accessory minerals include 
zircon, titanite, apatite, allanite, and fluorite.  Groundmass 
pertains to typically very finely crystalline, aphanitic, or glassy 
rock whose mineral identity is not easily decipherable using a 
microscope.  Alteration minerals include epidote, sericite, car-
bonate minerals, chlorite, clay minerals, zeolite, and anhydrite.  
All modal data were extracted from the same sources as those 
containing compiled geochemical data.

Histograms

A series of histograms (fig. 2) is included in order to pro-
vide a basic graphical depiction of the compiled data.  These 
histograms portray frequency distributions for the abundances 
of each geochemical constituent for which data were com-
piled.  In order to prepare each histogram, a table of data abun-
dance classes (bins) versus frequency within each class was 
computed (table 1).  A set of descriptive statistical abundance 
parameters, including mean and standard deviation, median, 
minimum, maximum, and count (number of samples for which 
abundance data for the particular constituent are available), 
were computed for each database geochemical constituent and 
are included on the histograms.  For the purpose of construct-
ing the histograms and calculating statistics, all censored (less 
than) values were deleted.  The worksheet tab labeled “db w 
censored data deleted” is a copy of the primary database with 
all censored data deleted.
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Figure � (above and following pages).  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples.  Height of each 
histogram bar indicates number of samples whose abundances of indicated component are as much as numeric label beneath bar but greater than value associated with next 
lower abundance bar (for instance, if two adjacent bars are labeled 90 and 100 and if associated data are reported as whole numbers, the height bar labeled 100 depicts the 
number of samples with abundances of 91 to 100).  Also presented are basic descriptive statistics, including mean and standard deviation, median, minimum, maximum, and 
count, for each distribution.  A, SiO2; B, TiO2; C, Al2O3; D, FeO*; E, MnO; F, MgO; G, CaO; H, Na2O; I, K2O; J, P2O5; K, H2O+; L, H2O-; M, CO2; N, Cl; O, F; P, S; Q, initial analytical total; R, 
total volatile content; S, Ba; T, La; U, Ce; V, Rb; W, Sr; X, Y; Y, Zr; Z, Nb; AA, Th; BB, Ga; CC, Co; DD, Cr; EE, Ni; FF, Sc; GG, V; HH, Ag; II, Cu; JJ, Mo; KK, Pb; LL, Zn; MM, Au.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.

C

References Cited 
 

�1

0

100

200

300

400

500

600

700

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 >25

Al2O3, IN WEIGHT PERCENT

F
R

E
Q

U
E

N
C

Y

Mean 15.36±2.41

Median 15.26

Minimum 2.76

Maximum 36.44

Count 2839



Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Figure �.  Frequency distribution histograms showing compositions of north-central and northeast Nevada intrusive rock samples—Continued.
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Table 1.  Number of observations (Freq) within each composition range (Bin) for north-central and northeast Nevada intrusion database.

[Each bin denotes an abundance less than or equal to the indicated value but greater than that specified by the bin with the next lowest abundance.  Bins for SiO
2
, TiO

2
, Al

2
O

3
, FeO*, MnO, MgO, CaO, Na

2
O, 

K
2
O, P

2
O

5
, H

2
O+, H

2
O-, CO

2
, Cl, F, S, initial analytical total (total_I), and total volatile content (vol_sum) are in weight percent; all others in parts per million]

SiO2 TiO2 Al2O3 FeO* MnO MgO CaO Na2O K2O

Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq
40 1 0.0 21 6 8 0 4 0.000 78 0.0 8 0 5 0.0 23 0.0 0
42 2 0.2 682 7 3 1 487 0.025 405 0.5 1001 1 667 0.5 221 0.5 82
44 5 0.4 647 8 6 2 579 0.050 550 1.0 426 2 476 1.0 61 1.0 78
46 11 0.6 699 9 8 3 575 0.075 644 1.5 354 3 433 1.5 61 1.5 78
48 10 0.8 340 10 15 4 453 0.100 353 2.0 329 4 423 2.0 82 2.0 73
50 29 1.0 168 11 29 5 226 0.125 199 2.5 202 5 296 2.5 137 2.5 172
52 32 1.2 94 12 38 6 197 0.150 95 3.0 137 6 185 3.0 323 3.0 281
54 40 1.4 54 13 142 7 113 0.175 52 3.5 72 7 98 3.5 706 3.5 392
56 60 1.6 27 14 367 8 65 0.200 31 4.0 47 8 53 4.0 677 4.0 363
58 58 1.8 18 15 621 9 40 0.225 19 4.5 49 9 38 4.5 288 4.5 500
60 68 2.0 14 16 663 10 24 0.250 11 5.0 29 10 36 5.0 166 5.0 357
62 103 2.2 6 17 488 11 23 0.275 7 5.5 27 11 23 5.5 36 5.5 201
64 132 2.4 14 18 273 12 20 0.300 4 6.0 23 12 10 6.0 17 6.0 85
66 216 2.6 6 19 71 13 8 0.325 5 6.5 17 13 15 6.5 9 6.5 60
68 300 2.8 0 20 34 14 6 0.350 3 7.0 16 14 12 7.0 12 7.0 35
70 293 3.0 0 21 18 15 3 0.375 0 7.5 11 15 4 7.5 1 7.5 22
72 339 >3.0 11 22 6 >15 16 0.400 3 8.0 11 >15 30 8.0 4 8.0 22
74 328 23 20 0.425 2 8.5 4 >8.0 7 8.5 11
76 366 24 7 0.450 1 9.0 4 9.0 7
78 274 25 6 0.475 0 9.5 6 9.5 4
80 83 >25 17 0.500 1 10.0 6 10.0 4
82 59 >0.500 6 10.5 4 >10.0 12
84 11 11.0 3
86 12 >11.0 21
88 3
90 3

>90 2
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Table 1.  Number of observations (Freq) within each composition range (Bin) for north-central and northeast Nevada intrusion database—Continued.
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P2O5 H2O
+ H2O

- CO2 Cl F S total_I vol_sum

Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq
0.00 62 0.00 0 0.00 2 0.00 9 0.000 58 0.00 0 0.00 18 85 11 0.0 52
0.05 317 0.25 41 0.10 255 0.10 369 0.010 88 0.02 52 0.01 264 86 3 0.5 691
0.10 428 0.50 173 0.20 287 0.20 89 0.020 53 0.04 126 0.02 37 87 4 1.0 811
0.15 428 0.75 233 0.30 96 0.30 47 0.030 34 0.06 142 0.03 9 88 4 1.5 312
0.20 388 1.00 169 0.40 57 0.40 34 0.040 9 0.08 140 0.04 15 89 6 2.0 147
0.25 328 1.25 72 0.50 29 0.50 24 0.050 8 0.10 68 0.05 6 90 5 2.5 95
0.30 199 1.50 60 0.60 32 0.60 16 0.060 2 0.12 37 0.06 6 91 9 3.0 76
0.35 140 1.75 27 0.70 15 0.70 13 0.070 1 0.14 31 0.07 7 92 10 3.5 60
0.40 72 2.00 30 0.80 13 0.80 11 0.080 1 0.16 18 0.08 7 93 18 4.0 47
0.45 34 2.25 18 0.90 15 0.90 8 0.090 0 0.18 12 0.09 5 94 28 4.5 30
0.50 36 2.50 20 1.00 11 1.00 11 0.100 0 0.20 10 0.10 3 95 26 5.0 41
0.55 26 2.75 11 1.10 9 1.10 1 >0.100 9 0.22 5 0.11 2 96 27 5.5 33
0.60 14 3.00 10 1.20 4 1.20 9 0.24 5 0.12 2 97 65 6.0 14
0.65 13 3.25 8 1.30 4 1.30 1 0.26 4 0.13 4 98 108 6.5 20
0.70 10 3.50 7 1.40 5 1.40 0 0.28 3 0.14 2 99 423 7.0 16
0.75 12 3.75 9 1.50 3 1.50 0 0.30 0 0.15 3 100 1399 7.5 15
0.80 4 4.00 3 1.60 5 1.60 2 0.32 2 0.16 1 101 591 8.0 15
0.85 5 4.25 7 1.70 1 1.70 5 0.34 0 0.17 6 102 56 8.5 7
0.90 5 4.50 2 1.80 3 1.80 5 0.36 4 0.18 2 103 18 9.0 16
0.95 1 4.75 2 1.90 2 1.90 1 0.38 1 0.19 2 104 13 9.5 9

>0.95 17 5.00 4 2.00 1 2.00 3 0.40 1 0.20 1 105 7 10.0 4
5.25 2 >2.00 8 >2.00 40 0.42 0 0.21 2 106 2 >10.0 68
5.50 3 0.44 3 0.22 1 107 4
5.75 0 0.46 1 0.23 1 108 3
6.00 1 0.48 0 0.24 1 >108 0

>6.00 3 0.50 1 0.25 0
>0.50 14 0.26 2

0.27 1
0.28 0
0.29 1
0.30 0

>0.30 77



Table 1.  Number of observations (Freq) within each composition range (Bin) for north-central and northeast Nevada intrusion database—Continued.

Ba La Ce Rb Sr Y Zr Nb Th

Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq
0 5 0 0 0 3 0 1 0 16 0 0 0 0 0 6 0 2

100 146 10 85 10 33 20 68 50 208 5 132 20 87 5 56 5 82
200 98 20 153 20 49 40 73 100 138 10 179 40 166 10 309 10 304
300 90 30 215 30 69 60 116 150 118 15 333 60 130 15 364 15 311
400 65 40 197 40 98 80 181 200 77 20 366 80 110 20 287 20 174
500 55 50 185 50 121 100 252 250 93 25 229 100 116 25 177 25 117
600 66 60 114 60 131 120 211 300 101 30 131 120 164 30 86 30 88
700 66 70 59 70 137 140 209 350 104 35 80 140 163 35 63 35 46
800 105 80 49 80 115 160 162 400 108 40 41 160 174 40 44 40 24
900 108 90 24 90 96 180 125 450 115 45 22 180 118 45 31 45 18

1000 129 100 17 100 60 200 93 500 111 50 20 200 118 50 20 50 9
1100 190 110 6 110 63 220 55 550 124 55 16 220 85 55 13 55 10
1200 175 120 3 120 42 240 58 600 108 60 13 240 68 60 5 60 6
1300 120 130 2 130 20 260 45 650 108 65 3 260 39 65 3 65 8
1400 77 140 3 140 25 280 31 700 86 70 3 280 31 70 2 70 6
1500 98 150 1 150 25 300 29 750 52 75 4 300 12 75 1 75 3
1600 55 160 1 160 11 320 15 800 51 80 4 320 16 80 4 80 1
1700 46 170 1 170 14 340 11 850 38 85 2 340 11 85 3 85 4
1800 30 180 2 180 2 360 13 900 18 90 0 360 8 90 2 90 0
1900 23 190 2 190 2 380 8 950 18 95 1 380 4 95 4 95 1
2000 24 200 0 200 7 400 7 1000 8 100 2 400 12 100 0 100 1
2100 16 >200 2 210 4 420 7 1050 9 >100 13 420 3 >100 3 >100 5
2200 15 220 2 440 2 1100 3 440 2
2300 10 230 0 460 4 1150 5 460 3
2400 7 240 1 480 3 1200 10 480 6
2500 5 250 0 500 0 1250 5 500 1
2600 5 >250 14 >500 9 1300 8 >500 7
2700 5 1350 5
2800 5 1400 4
2900 5 1450 1
3000 2 1500 0

>3000 39 >1500 5
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Table 1.  Number of observations (Freq) within each composition range (Bin) for north-central and northeast Nevada intrusion database—Continued.
References Cited 
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Ga Co Cr Ni Sc V Ag Cu Mo

Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq Bin Freq
0 0 0 10 0 51 0 5 0 2 0 35 0.0 1 0 57 0 12
5 8 5 444 20 461 10 423 5 519 20 327 0.2 130 10 566 2 153

10 52 10 261 40 189 20 162 10 348 40 199 0.4 37 20 180 4 114
15 94 15 106 60 118 30 113 15 109 60 204 0.6 19 30 75 6 65
20 413 20 38 80 87 40 53 20 46 80 173 0.8 7 40 70 8 53
25 189 25 30 100 48 50 21 25 27 100 120 1.0 27 50 48 10 17
30 49 30 33 120 35 60 11 30 13 120 48 1.2 7 60 40 12 10
35 10 35 18 140 32 70 7 35 18 140 36 1.4 4 70 27 14 10
40 1 40 9 160 30 80 15 40 5 160 35 1.6 8 80 18 16 8
45 0 45 11 180 18 90 5 45 3 180 17 1.8 3 90 15 18 4
50 1 50 6 200 26 100 7 50 1 200 17 2.0 8 100 16 20 6

>50 0 55 4 220 29 110 5 >50 2 220 9 2.2 6 110 13 22 2
60 0 240 11 120 4 240 8 2.4 6 120 5 24 3

>60 3 260 7 130 8 260 10 2.6 3 130 5 26 4
280 12 140 5 280 3 2.8 4 140 1 28 4
300 6 150 6 300 0 3.0 4 150 6 30 2
320 9 160 2 320 2 3.2 2 160 5 >30 24
340 6 170 4 340 5 3.4 0 170 3
360 7 180 0 360 2 3.6 0 180 3
380 10 190 2 380 1 3.8 2 190 1
400 4 200 3 400 1 4.0 4 200 2

>400 39 >200 14 >400 5 4.2 2 >200 84
4.4 3
4.6 0
4.8 0
5.0 6
5.2 2
5.4 0
5.6 1
5.8 0
6.0 0

>6.0 19



Pb Zn Au

Bin Freq Bin Freq Bin Freq
0 0 0 26 0.00 2
5 46 10 51 0.50 88

10 120 20 116 1.00 11
15 183 30 147 1.50 1
20 199 40 185 2.00 6
25 128 50 201 2.50 1
30 74 60 207 3.00 9
35 52 70 139 3.50 1
40 29 80 121 4.00 6
45 22 90 58 4.50 1
50 14 100 58 5.00 14
55 7 110 28 5.50 0
60 5 120 15 6.00 5
65 3 130 16 6.50 1
70 3 140 11 7.00 3
75 1 150 7 7.50 1
80 5 160 4 8.00 4
85 1 170 11 8.50 0
90 1 180 9 9.00 2
95 1 190 2 9.50 0

100 3 200 1 10.00 0
105 0 210 2 >10.00 14
110 6 220 1
115 0 230 0
120 1 240 1
125 0 250 2
130 3 260 0
135 0 270 2
140 2 280 0
145 0 290 0
150 3 300 1

>150 16 >300 23

Table 1.  Number of observations (Freq) within each composition range (Bin) for north-central and northeast Nevada intrusion database—Continued.
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